On certain non-constructive properties of infinite-dimensional vector spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 3, pp. 285-309.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In set theory without the axiom of choice (${\rm AC}$), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC$^{\rm LO}$ (AC for linearly ordered families of nonempty sets)---and hence AC$^{\rm WO}$ (AC for well-ordered families of nonempty sets)--- ${\rm DC}({}\kappa)$ (where $\kappa$ is an uncountable regular cardinal), and "for every infinite set $X$, there is a bijection $f\colon X\rightarrow\{0,1\}\times X$", implies the statement "there exists a field $F$ such that every vector space over $F$ has a basis" in ZFA set theory. The above results settle the corresponding open problems from Howard and Rubin "Consequences of the axiom of choice:", and also shed light on the question of Bleicher in "Some theorems on vector spaces and the axiom of choice" about the set-theoretic strength of the above algebraic statement. (ii) "For every field $F$, for every family $\mathcal{V}=\{V_{i}\colon i\in I\}$ of nontrivial vector spaces over $F$, there is a family $\mathcal{F}=\{f_{i}\colon i\in I\}$ such that $f_{i}\in F^{V_{i}}$ for all $ i\in I$, and $f_{i}$ is a nonzero linear functional" is equivalent to the full AC in ZFA set theory. (iii) "Every infinite-dimensional vector space over $\mathbb{R}$ has a norm" is not provable in ZF set theory.
DOI : 10.14712/1213-7243.2015.258
Classification : 03E25, 03E35, 15A03, 15A04
Keywords: choice principle; vector space; base for vector space; nonzero linear functional; norm on vector space; Fraenkel--Mostowski permutation models of ${\rm ZFA}+\neg{\rm AC}$; Jech--Sochor first embedding theorem
@article{10_14712_1213_7243_2015_258,
     author = {Tachtsis, Eleftherios},
     title = {On certain non-constructive properties of infinite-dimensional vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {285--309},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2018},
     doi = {10.14712/1213-7243.2015.258},
     mrnumber = {3861553},
     zbl = {06940871},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.258/}
}
TY  - JOUR
AU  - Tachtsis, Eleftherios
TI  - On certain non-constructive properties of infinite-dimensional vector spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 285
EP  - 309
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.258/
DO  - 10.14712/1213-7243.2015.258
LA  - en
ID  - 10_14712_1213_7243_2015_258
ER  - 
%0 Journal Article
%A Tachtsis, Eleftherios
%T On certain non-constructive properties of infinite-dimensional vector spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 285-309
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.258/
%R 10.14712/1213-7243.2015.258
%G en
%F 10_14712_1213_7243_2015_258
Tachtsis, Eleftherios. On certain non-constructive properties of infinite-dimensional vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 3, pp. 285-309. doi : 10.14712/1213-7243.2015.258. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.258/

Cité par Sources :