Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 2, pp. 223-231.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that for a normed linear space $ X $, if $ f_1\colon X\to\mathbb{R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\to\mathbb{R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\leq f_2 $, then there exists $ f\in C^{1,\omega}(X) $ such that $ f_1\leq f\leq f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega(t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega}_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.
DOI : 10.14712/1213-7243.2015.245
Classification : 26B25
Keywords: Ilmanen lemma; $ C^{1, \omega} $ function; semiconvex function with general modulus
@article{10_14712_1213_7243_2015_245,
     author = {Kry\v{s}tof, V\'aclav},
     title = {Generalized versions of {Ilmanen} lemma: {Insertion} of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2018},
     doi = {10.14712/1213-7243.2015.245},
     mrnumber = {3815687},
     zbl = {06940865},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.245/}
}
TY  - JOUR
AU  - Kryštof, Václav
TI  - Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 223
EP  - 231
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.245/
DO  - 10.14712/1213-7243.2015.245
LA  - en
ID  - 10_14712_1213_7243_2015_245
ER  - 
%0 Journal Article
%A Kryštof, Václav
%T Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 223-231
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.245/
%R 10.14712/1213-7243.2015.245
%G en
%F 10_14712_1213_7243_2015_245
Kryštof, Václav. Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 2, pp. 223-231. doi : 10.14712/1213-7243.2015.245. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.245/

Cité par Sources :