Periodic solutions to Lagrangian system
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 2, pp. 241-251.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder $\mathbb{R}^m\times\mathbb{T}^n$. A large class of nonhomotopic periodic solutions has been found.
DOI : 10.14712/1213-7243.2015.243
Classification : 34C25, 70F20
Keywords: Lagrangian system; periodic solution
@article{10_14712_1213_7243_2015_243,
     author = {Zubelevich, Oleg},
     title = {Periodic solutions to {Lagrangian} system},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--251},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2018},
     doi = {10.14712/1213-7243.2015.243},
     mrnumber = {3815689},
     zbl = {06940867},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.243/}
}
TY  - JOUR
AU  - Zubelevich, Oleg
TI  - Periodic solutions to Lagrangian system
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 241
EP  - 251
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.243/
DO  - 10.14712/1213-7243.2015.243
LA  - en
ID  - 10_14712_1213_7243_2015_243
ER  - 
%0 Journal Article
%A Zubelevich, Oleg
%T Periodic solutions to Lagrangian system
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 241-251
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.243/
%R 10.14712/1213-7243.2015.243
%G en
%F 10_14712_1213_7243_2015_243
Zubelevich, Oleg. Periodic solutions to Lagrangian system. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 2, pp. 241-251. doi : 10.14712/1213-7243.2015.243. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.243/

Cité par Sources :