Radon-Nikodym property
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 4, pp. 461-464.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a Banach space $E$ and a probability space $(X, \mathcal{A}, \lambda)$, a new proof is given that a measure $\mu: \mathcal{A} \to E$, with $\mu \ll \lambda$, has RN derivative with respect to $\lambda$ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_{C} : \mathcal{A} \to [0, \infty]$ is a finite valued countably additive measure. Here we define $|\mu |_{C}(A) = \sup \{\sum_{k} |\langle \mu (A_{k}), f_{k}\rangle |\}$ where $\{A_{k}\}$ is a finite disjoint collection of elements from $\mathcal{A}$, each contained in $A$, and $\{f_{k}\}\subset E'$ satisfies $\sup_{k} |f_{k} (C)|\leq 1$. Then the result is extended to the case when $E$ is a Frechet space.
DOI : 10.14712/1213-7243.2015.228
Classification : 28A51, 28B05, 28C05, 46B22, 46G05, 46G10, 60B05
Keywords: liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative
@article{10_14712_1213_7243_2015_228,
     author = {Khurana, Surjit Singh},
     title = {Radon-Nikodym property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {461--464},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2017},
     doi = {10.14712/1213-7243.2015.228},
     mrnumber = {3737118},
     zbl = {06837079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.228/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Radon-Nikodym property
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 461
EP  - 464
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.228/
DO  - 10.14712/1213-7243.2015.228
LA  - en
ID  - 10_14712_1213_7243_2015_228
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Radon-Nikodym property
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 461-464
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.228/
%R 10.14712/1213-7243.2015.228
%G en
%F 10_14712_1213_7243_2015_228
Khurana, Surjit Singh. Radon-Nikodym property. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 4, pp. 461-464. doi : 10.14712/1213-7243.2015.228. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.228/

Cité par Sources :