On the structure of universal differentiability sets
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 315-326.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A subset of $\mathbb R^{d}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon\mathbb R^{d}\to \mathbb R$. We show that any universal differentiability set contains a `kernel' in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.
DOI : 10.14712/1213-7243.2015.218
Classification : 46G05, 46T20
Keywords: differentiability; Lipschitz functions; universal differentiability set; $\sigma$-porous set
@article{10_14712_1213_7243_2015_218,
     author = {Dymond, Michael},
     title = {On the structure of universal differentiability sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--326},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2017},
     doi = {10.14712/1213-7243.2015.218},
     mrnumber = {3708776},
     zbl = {06837068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.218/}
}
TY  - JOUR
AU  - Dymond, Michael
TI  - On the structure of universal differentiability sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 315
EP  - 326
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.218/
DO  - 10.14712/1213-7243.2015.218
LA  - en
ID  - 10_14712_1213_7243_2015_218
ER  - 
%0 Journal Article
%A Dymond, Michael
%T On the structure of universal differentiability sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 315-326
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.218/
%R 10.14712/1213-7243.2015.218
%G en
%F 10_14712_1213_7243_2015_218
Dymond, Michael. On the structure of universal differentiability sets. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 315-326. doi : 10.14712/1213-7243.2015.218. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.218/

Cité par Sources :