Some applications of the point-open subbase game
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 383-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a subbase $\mathcal S$ of a space $X$, the game $PO(\mathcal S,X)$ is defined for two players $P$ and $O$ who respectively pick, at the $n$-th move, a point $x_n\in X$ and a set $U_n\in \mathcal S$ such that $x_n\in U_n$. The game stops after the moves $\{x_n,U_n: n\in\o\}$ have been made and the player $P$ wins if $\bigcup_{n\in\o}U_n=X$; otherwise $O$ is the winner. Since $PO(\mathcal S,X)$ is an evident modification of the well-known point-open game $PO(X)$, the primary line of research is to describe the relationship between $PO(X)$ and $PO(\mathcal S,X)$ for a given subbase $\mathcal S$. It turns out that, for any subbase $\mathcal S$, the player $P$ has a winning strategy in $PO(\mathcal S,X)$ if and only if he has one in $PO(X)$. However, these games are not equivalent for the player $O$: there exists even a discrete space $X$ with a subbase $\mathcal S$ such that neither $P$ nor $O$ has a winning strategy in the game $PO(\mathcal S,X)$. Given a compact space $X$, we show that the games $PO(\mathcal S,X)$ and $PO(X)$ are equivalent for any subbase $\mathcal S$ of the space $X$.
DOI : 10.14712/1213-7243.2015.210
Classification : 54A25, 54D30, 54D70, 91A05
Keywords: point-open game; subbase; winning strategy; players; discrete space; compact space; scattered space; measurable cardinal
@article{10_14712_1213_7243_2015_210,
     author = {S\'anchez, D. Guerrero and Tkachuk, V. V.},
     title = {Some applications of the point-open subbase game},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2017},
     doi = {10.14712/1213-7243.2015.210},
     mrnumber = {3708781},
     zbl = {06837073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.210/}
}
TY  - JOUR
AU  - Sánchez, D. Guerrero
AU  - Tkachuk, V. V.
TI  - Some applications of the point-open subbase game
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 383
EP  - 395
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.210/
DO  - 10.14712/1213-7243.2015.210
LA  - en
ID  - 10_14712_1213_7243_2015_210
ER  - 
%0 Journal Article
%A Sánchez, D. Guerrero
%A Tkachuk, V. V.
%T Some applications of the point-open subbase game
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 383-395
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.210/
%R 10.14712/1213-7243.2015.210
%G en
%F 10_14712_1213_7243_2015_210
Sánchez, D. Guerrero; Tkachuk, V. V. Some applications of the point-open subbase game. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 383-395. doi : 10.14712/1213-7243.2015.210. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.210/

Cité par Sources :