Generic extensions of models of ZFC
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 347-358.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35--46, saying that for models $M\subseteq N$ of ZFC with same ordinals, the condition $Apr_{M,N}(\kappa)$ implies that $N$ is a $\kappa$-C.C. generic extension of $M$.
DOI : 10.14712/1213-7243.2015.209
Classification : 03E40, 03E45
Keywords: inner model; extension of an inner model; $\kappa$-generic extension; $\kappa$-C.C. generic extension; $\kappa$-boundedness condition; $\kappa$ approximation condition; Boolean ultrapower; Boolean valued model
@article{10_14712_1213_7243_2015_209,
     author = {Bukovsk\'y, Lev},
     title = {Generic extensions of models of {ZFC}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {347--358},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2017},
     doi = {10.14712/1213-7243.2015.209},
     mrnumber = {3708778},
     zbl = {06837070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.209/}
}
TY  - JOUR
AU  - Bukovský, Lev
TI  - Generic extensions of models of ZFC
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 347
EP  - 358
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.209/
DO  - 10.14712/1213-7243.2015.209
LA  - en
ID  - 10_14712_1213_7243_2015_209
ER  - 
%0 Journal Article
%A Bukovský, Lev
%T Generic extensions of models of ZFC
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 347-358
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.209/
%R 10.14712/1213-7243.2015.209
%G en
%F 10_14712_1213_7243_2015_209
Bukovský, Lev. Generic extensions of models of ZFC. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 3, pp. 347-358. doi : 10.14712/1213-7243.2015.209. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.209/

Cité par Sources :