On the solvability of systems of linear equations over the ring $\mathbb{Z}$ of integers
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 2, pp. 241-260.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the question whether a system $(E_i)_{i\in I}$ of homogeneous linear equations over $\mathbb{Z}$ is non-trivially solvable in $\mathbb{Z}$ provided that each subsystem $(E_j)_{j\in J}$ with $|J|\le c$ is non-trivially solvable in $\mathbb{Z}$ where $c$ is a fixed cardinal number such that $c |I|$. Among other results, we establish the following. (a) The answer is `No' in the finite case (i.e., $I$ being finite). (b) The answer is `No' in the denumerable case (i.e., $|I|=\aleph_{0}$ and $c$ a natural number). (c) The answer in case that $I$ is uncountable and $c\le\aleph_{0}$ is `No relatively consistent with $\mathsf{ZF}$', but is unknown in $\mathsf{ZFC}$. For the above case, we show that ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has a non-trivial solution in $\mathbb{Z}$'' implies (1) the Axiom of Countable Choice (2) the Axiom of Choice for families of non-empty finite sets (3) the Kinna--Wagner selection principle for families of sets each order isomorphic to $\mathbb{Z}$ with the usual ordering, and is not implied by (4) the Boolean Prime Ideal Theorem ($\mathsf{BPI}$) in $\mathsf{ZF}$ (5) the Axiom of Multiple Choice ($\mathsf{MC}$) in $\mathsf{ZFA}$ (6) $\mathsf{DC}_{\kappa}$ in $\mathsf{ZF}$, for every regular well-ordered cardinal number $\kappa$. We also show that the related statement ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has an uncountable subsystem with a non-trivial solution in $\mathbb{Z}$'' (1) is provable in $\mathsf{ZFC}$ (2) is not provable in $\mathsf{ZF}$ (3) does not imply ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has a non-trivial solution in $\mathbb{Z}$'' in $\mathsf{ZFA}$.
DOI : 10.14712/1213-7243.2015.207
Classification : 03E25, 03E35
Keywords: Axiom of Choice; weak axioms of choice; linear equations with coefficients in $\mathbb{Z}$; infinite systems of linear equations over $\mathbb{Z}$; non-trivial solution of a system in $\mathbb{Z}$; permutation models of $\mathsf{ZFA}$; symmetric models of $\mathsf{ZF}$
@article{10_14712_1213_7243_2015_207,
     author = {Herrlich, Horst and Tachtsis, Eleftherios},
     title = {On the solvability of systems of linear equations over the ring $\mathbb{Z}$ of integers},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--260},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2017},
     doi = {10.14712/1213-7243.2015.207},
     mrnumber = {3666944},
     zbl = {06773717},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.207/}
}
TY  - JOUR
AU  - Herrlich, Horst
AU  - Tachtsis, Eleftherios
TI  - On the solvability of systems of linear equations over the ring $\mathbb{Z}$ of integers
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 241
EP  - 260
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.207/
DO  - 10.14712/1213-7243.2015.207
LA  - en
ID  - 10_14712_1213_7243_2015_207
ER  - 
%0 Journal Article
%A Herrlich, Horst
%A Tachtsis, Eleftherios
%T On the solvability of systems of linear equations over the ring $\mathbb{Z}$ of integers
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 241-260
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.207/
%R 10.14712/1213-7243.2015.207
%G en
%F 10_14712_1213_7243_2015_207
Herrlich, Horst; Tachtsis, Eleftherios. On the solvability of systems of linear equations over the ring $\mathbb{Z}$ of integers. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 2, pp. 241-260. doi : 10.14712/1213-7243.2015.207. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.207/

Cité par Sources :