On projectional skeletons in Vašák spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 2, pp. 173-182.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.
DOI : 10.14712/1213-7243.2015.200
Classification : 03C30, 46B26
Keywords: Vašák Banach space; projectional skeleton; elementary submodel
@article{10_14712_1213_7243_2015_200,
     author = {Kalenda, Ond\v{r}ej F. K.},
     title = {On projectional skeletons in {Va\v{s}\'ak} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {173--182},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2017},
     doi = {10.14712/1213-7243.2015.200},
     mrnumber = {3666939},
     zbl = {06773712},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.200/}
}
TY  - JOUR
AU  - Kalenda, Ondřej F. K.
TI  - On projectional skeletons in Vašák spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 173
EP  - 182
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.200/
DO  - 10.14712/1213-7243.2015.200
LA  - en
ID  - 10_14712_1213_7243_2015_200
ER  - 
%0 Journal Article
%A Kalenda, Ondřej F. K.
%T On projectional skeletons in Vašák spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 173-182
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.200/
%R 10.14712/1213-7243.2015.200
%G en
%F 10_14712_1213_7243_2015_200
Kalenda, Ondřej F. K. On projectional skeletons in Vašák spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 2, pp. 173-182. doi : 10.14712/1213-7243.2015.200. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.200/

Cité par Sources :