Several quantitative characterizations of some specific groups
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 19-34.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group and let $\pi(G)=\{p_1, p_2,\ldots, p_k\}$ be the set of prime divisors of $|G|$ for which $p_1 p_2 \cdots p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname{GK} (G)$, is defined as follows: its vertex set is $\pi(G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in ${\rm GK}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots, d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi(G)$ is the vertex set of a connected component of $\operatorname{GK} (G)$, then the largest $\omega$-number which divides $|G|$, is said to be an order component of $\operatorname{GK} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.
DOI : 10.14712/1213-7243.2015.194
Classification : 20D05, 20D06, 20D08
Keywords: OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group
@article{10_14712_1213_7243_2015_194,
     author = {Mohammadzadeh, A. and Moghaddamfar, A. R.},
     title = {Several quantitative characterizations of some specific groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2017},
     doi = {10.14712/1213-7243.2015.194},
     mrnumber = {3631678},
     zbl = {06736741},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.194/}
}
TY  - JOUR
AU  - Mohammadzadeh, A.
AU  - Moghaddamfar, A. R.
TI  - Several quantitative characterizations of some specific groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 19
EP  - 34
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.194/
DO  - 10.14712/1213-7243.2015.194
LA  - en
ID  - 10_14712_1213_7243_2015_194
ER  - 
%0 Journal Article
%A Mohammadzadeh, A.
%A Moghaddamfar, A. R.
%T Several quantitative characterizations of some specific groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 19-34
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.194/
%R 10.14712/1213-7243.2015.194
%G en
%F 10_14712_1213_7243_2015_194
Mohammadzadeh, A.; Moghaddamfar, A. R. Several quantitative characterizations of some specific groups. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 19-34. doi : 10.14712/1213-7243.2015.194. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.194/

Cité par Sources :