Spaces with property $(DC(\omega_1))$
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 131-135.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that if $X$ is a first countable space with property $(DC(\omega_1))$ and with a $G_\delta$-diagonal then the cardinality of $X$ is at most $\mathfrak c$. We also show that if $X$ is a first countable, DCCC, normal space then the extent of $X$ is at most $\mathfrak c$.
DOI : 10.14712/1213-7243.2015.190
Classification : 54D20, 54E35
Keywords: $G_\delta$-diagonal; property $(DC(\omega_1))$; cardinal; DCCC
@article{10_14712_1213_7243_2015_190,
     author = {Xuan, Wei-Feng and Shi, Wei-Xue},
     title = {Spaces with property $(DC(\omega_1))$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {131--135},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2017},
     doi = {10.14712/1213-7243.2015.190},
     mrnumber = {3631686},
     zbl = {06736749},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.190/}
}
TY  - JOUR
AU  - Xuan, Wei-Feng
AU  - Shi, Wei-Xue
TI  - Spaces with property $(DC(\omega_1))$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 131
EP  - 135
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.190/
DO  - 10.14712/1213-7243.2015.190
LA  - en
ID  - 10_14712_1213_7243_2015_190
ER  - 
%0 Journal Article
%A Xuan, Wei-Feng
%A Shi, Wei-Xue
%T Spaces with property $(DC(\omega_1))$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 131-135
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.190/
%R 10.14712/1213-7243.2015.190
%G en
%F 10_14712_1213_7243_2015_190
Xuan, Wei-Feng; Shi, Wei-Xue. Spaces with property $(DC(\omega_1))$. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 131-135. doi : 10.14712/1213-7243.2015.190. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.190/

Cité par Sources :