Steiner forms
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 4, pp. 527-536.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A trilinear alternating form on dimension $n$ can be defined based on a Steiner triple system of order $n$. We prove some basic properties of these forms and using the radical polynomial we show that for dimensions up to $15$ nonisomorphic Steiner triple systems provide nonequivalent forms over $GF(2)$. Finally, we prove that Steiner triple systems of order $n$ with different number of subsystems of order $(n-1)/2$ yield nonequivalent forms over $GF(2)$.
DOI : 10.14712/1213-7243.2015.182
Classification : 15A69
Keywords: trilinear alternating form; Steiner triple system; radical polynomial
@article{10_14712_1213_7243_2015_182,
     author = {Hora, Jan},
     title = {Steiner forms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {527--536},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2016},
     doi = {10.14712/1213-7243.2015.182},
     mrnumber = {3583304},
     zbl = {06674894},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.182/}
}
TY  - JOUR
AU  - Hora, Jan
TI  - Steiner forms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 527
EP  - 536
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.182/
DO  - 10.14712/1213-7243.2015.182
LA  - en
ID  - 10_14712_1213_7243_2015_182
ER  - 
%0 Journal Article
%A Hora, Jan
%T Steiner forms
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 527-536
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.182/
%R 10.14712/1213-7243.2015.182
%G en
%F 10_14712_1213_7243_2015_182
Hora, Jan. Steiner forms. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 4, pp. 527-536. doi : 10.14712/1213-7243.2015.182. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.182/

Cité par Sources :