Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
DOI : 10.14712/1213-7243.2015.177
Classification : 53C20
Keywords: Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation
@article{10_14712_1213_7243_2015_177,
     author = {Santos, M. S.},
     title = {Compactness theorems for the {Bakry-Emery} {Ricci} tensor on {semi-Riemannian} manifolds},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2017},
     doi = {10.14712/1213-7243.2015.177},
     mrnumber = {3631682},
     zbl = {06736745},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.177/}
}
TY  - JOUR
AU  - Santos, M. S.
TI  - Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2017
SP  - 79
EP  - 86
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.177/
DO  - 10.14712/1213-7243.2015.177
LA  - en
ID  - 10_14712_1213_7243_2015_177
ER  - 
%0 Journal Article
%A Santos, M. S.
%T Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
%J Commentationes Mathematicae Universitatis Carolinae
%D 2017
%P 79-86
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.177/
%R 10.14712/1213-7243.2015.177
%G en
%F 10_14712_1213_7243_2015_177
Santos, M. S. Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 58 (2017) no. 1, pp. 79-86. doi : 10.14712/1213-7243.2015.177. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.177/

Cité par Sources :