Functionally countable subalgebras and some properties of the Banaschewski compactification
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 3, pp. 365-379.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^{\psi}(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^{\beta_0X\setminus X}$ (resp., $C^{\psi}_c(X)=M_c^{\beta_0X\setminus \upsilon_0X}$), where $\beta_0X$ is the Banaschewski compactification of $X$ and $\upsilon_0X$ is the $\mathbb{N}$-compactification of $X$. This implies that for an $\mathbb{N}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^{\beta_0X\setminus X}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta_0X\setminus \upsilon_0X$ has cardinality at least $2^{2^{\aleph_0}}$. Moreover, for a locally compact and $\mathbb{N}$-compact space $X$, the remainder $\beta_0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta_0X\setminus \upsilon_0X$ and $\beta_0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.
DOI : 10.14712/1213-7243.2015.170
Classification : 54A25, 54C30, 54C40, 54D40, 54D60, 54G05
Keywords: zero-dimensional space; strongly zero-dimensional space; $\mathbb{N}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space
@article{10_14712_1213_7243_2015_170,
     author = {Olfati, A. R.},
     title = {Functionally countable subalgebras and some properties of the {Banaschewski} compactification},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {365--379},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2016},
     doi = {10.14712/1213-7243.2015.170},
     mrnumber = {3554517},
     zbl = {1374.54030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.170/}
}
TY  - JOUR
AU  - Olfati, A. R.
TI  - Functionally countable subalgebras and some properties of the Banaschewski compactification
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 365
EP  - 379
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.170/
DO  - 10.14712/1213-7243.2015.170
LA  - en
ID  - 10_14712_1213_7243_2015_170
ER  - 
%0 Journal Article
%A Olfati, A. R.
%T Functionally countable subalgebras and some properties of the Banaschewski compactification
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 365-379
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.170/
%R 10.14712/1213-7243.2015.170
%G en
%F 10_14712_1213_7243_2015_170
Olfati, A. R. Functionally countable subalgebras and some properties of the Banaschewski compactification. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 3, pp. 365-379. doi : 10.14712/1213-7243.2015.170. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.170/

Cité par Sources :