Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_14712_1213_7243_2015_168, author = {Wachsmuth, Daniel}, title = {The regularity of the positive part of functions in $L^2(I; H^1(\Omega)) \cap H^1(I; H^1(\Omega)^*)$ with applications to parabolic equations}, journal = {Commentationes Mathematicae Universitatis Carolinae}, pages = {327--332}, publisher = {mathdoc}, volume = {57}, number = {3}, year = {2016}, doi = {10.14712/1213-7243.2015.168}, mrnumber = {3554513}, zbl = {06674883}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.168/} }
TY - JOUR AU - Wachsmuth, Daniel TI - The regularity of the positive part of functions in $L^2(I; H^1(\Omega)) \cap H^1(I; H^1(\Omega)^*)$ with applications to parabolic equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 2016 SP - 327 EP - 332 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.168/ DO - 10.14712/1213-7243.2015.168 LA - en ID - 10_14712_1213_7243_2015_168 ER -
%0 Journal Article %A Wachsmuth, Daniel %T The regularity of the positive part of functions in $L^2(I; H^1(\Omega)) \cap H^1(I; H^1(\Omega)^*)$ with applications to parabolic equations %J Commentationes Mathematicae Universitatis Carolinae %D 2016 %P 327-332 %V 57 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.168/ %R 10.14712/1213-7243.2015.168 %G en %F 10_14712_1213_7243_2015_168
Wachsmuth, Daniel. The regularity of the positive part of functions in $L^2(I; H^1(\Omega)) \cap H^1(I; H^1(\Omega)^*)$ with applications to parabolic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 3, pp. 327-332. doi : 10.14712/1213-7243.2015.168. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.168/
Cité par Sources :