A weighted inequality for the Hardy operator involving suprema
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 3, pp. 317-326.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $u$ be a weight on $(0, \infty)$. Assume that $u$ is continuous on $(0, \infty)$. Let the operator $S_{u}$ be given at measurable non-negative function $\varphi$ on $(0, \infty)$ by $$ S_{u}\varphi (t)= \sup_{0 \tau\leq t}u(\tau)\varphi (\tau). $$ We characterize weights $v,w$ on $(0, \infty)$ for which there exists a positive constant $C$ such that the inequality $$ \left( \int_{0}^{\infty}[S_{u}\varphi (t)]^{q}w(t)\,dt\right)^{\frac 1q} \lesssim \left( \int_{0}^{\infty}[\varphi (t)]^{p}v(t)\,dt\right)^{\frac 1p} $$ holds for every $0$. Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.
DOI : 10.14712/1213-7243.2015.167
Classification : 26D15, 47G10
Keywords: Hardy operators involving suprema; weighted inequalities
@article{10_14712_1213_7243_2015_167,
     author = {Hofmanov\'a, Pavla},
     title = {A weighted inequality for the {Hardy} operator involving suprema},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {317--326},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2016},
     doi = {10.14712/1213-7243.2015.167},
     mrnumber = {3554512},
     zbl = {06674882},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.167/}
}
TY  - JOUR
AU  - Hofmanová, Pavla
TI  - A weighted inequality for the Hardy operator involving suprema
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 317
EP  - 326
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.167/
DO  - 10.14712/1213-7243.2015.167
LA  - en
ID  - 10_14712_1213_7243_2015_167
ER  - 
%0 Journal Article
%A Hofmanová, Pavla
%T A weighted inequality for the Hardy operator involving suprema
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 317-326
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.167/
%R 10.14712/1213-7243.2015.167
%G en
%F 10_14712_1213_7243_2015_167
Hofmanová, Pavla. A weighted inequality for the Hardy operator involving suprema. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 3, pp. 317-326. doi : 10.14712/1213-7243.2015.167. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.167/

Cité par Sources :