Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 2, pp. 201-229.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the summation equation, for $t\in[\mu-2,\mu+b]_{\mathbb{N}_{\mu-2}}$, \begin{align*} y(t)=\gamma_1(t)H_1\left(\sum_{i=1}^{n}a_iy\left(\xi_i\right)\right) + \gamma_2(t)H_2\left(\sum_{i=1}^{m}b_iy\left(\zeta_i\right)\right) + \lambda\sum_{s=0}^{b}G(t,s)f(s+\mu-1,y(s+\mu-1)) \end{align*} in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu\in(1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto\gamma_1(t)$, $\gamma_2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green's functions that change sign.
DOI : 10.14712/1213-7243.2015.164
Classification : 26A33, 39A05, 39A12, 39A99, 47H07
Keywords: summation equation; sign-changing kernel; discrete fractional calculus; positive solution; nonlocal boundary condition
@article{10_14712_1213_7243_2015_164,
     author = {Goodrich, Christopher S.},
     title = {Summation equations with sign changing kernels and applications to discrete fractional boundary value problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {201--229},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2016},
     doi = {10.14712/1213-7243.2015.164},
     mrnumber = {3513445},
     zbl = {1374.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.164/}
}
TY  - JOUR
AU  - Goodrich, Christopher S.
TI  - Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 201
EP  - 229
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.164/
DO  - 10.14712/1213-7243.2015.164
LA  - en
ID  - 10_14712_1213_7243_2015_164
ER  - 
%0 Journal Article
%A Goodrich, Christopher S.
%T Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 201-229
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.164/
%R 10.14712/1213-7243.2015.164
%G en
%F 10_14712_1213_7243_2015_164
Goodrich, Christopher S. Summation equations with sign changing kernels and applications to discrete fractional boundary value problems. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 2, pp. 201-229. doi : 10.14712/1213-7243.2015.164. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.164/

Cité par Sources :