Differences of two semiconvex functions on the real line
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 21-37.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that real functions on $\mathbb R$ which can be represented as the difference of two semiconvex functions with a general modulus (or of two lower $C^1$-functions, or of two strongly paraconvex functions) coincide with semismooth functions on $\mathbb R$ (i.e. those locally Lipschitz functions on $\mathbb R$ for which $f'_+(x) = \lim_{t \to x+} f'_+(t)$ and $f'_-(x) = \lim_{t \to x-} f'_-(t)$ for each $x$). Further, for each modulus $\omega$, we characterize the class $DSC_{\omega}$ of functions on $\mathbb R$ which can be written as $f=g-h$, where $g$ and $h$ are semiconvex with modulus $C\omega$ (for some $C>0$) using a new notion of $[\omega]$-variation. We prove that $f \in DSC_{\omega}$ if and only if $f$ is continuous and there exists $D>0$ such that $f'_+$ has locally finite $[D \omega]$-variation. This result is proved via a generalization of the classical Jordan decomposition theorem which characterizes the differences of two $\omega$-nondecreasing functions (defined by the inequality $f(y) \geq f(x)- \omega(y-x)$ for $y>x$) on $[a,b]$ as functions with finite $[2\omega]$-variation. The research was motivated by a recent article by J. Duda and L. Zajíček on Gâteaux differentiability of semiconvex functions, in which surfaces described by differences of two semiconvex functions naturally appear.
DOI : 10.14712/1213-7243.2015.153
Classification : 26A45, 26A48, 26A51, 26B05
Keywords: semiconvex function with general modulus; difference of two semiconvex functions; $\omega$-nondecreasing function; $[\omega]$-variation; regulated function
@article{10_14712_1213_7243_2015_153,
     author = {Kry\v{s}tof, V\'aclav and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Differences of two semiconvex functions on the real line},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {21--37},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2016},
     doi = {10.14712/1213-7243.2015.153},
     mrnumber = {3478336},
     zbl = {06562193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.153/}
}
TY  - JOUR
AU  - Kryštof, Václav
AU  - Zajíček, Luděk
TI  - Differences of two semiconvex functions on the real line
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 21
EP  - 37
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.153/
DO  - 10.14712/1213-7243.2015.153
LA  - en
ID  - 10_14712_1213_7243_2015_153
ER  - 
%0 Journal Article
%A Kryštof, Václav
%A Zajíček, Luděk
%T Differences of two semiconvex functions on the real line
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 21-37
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.153/
%R 10.14712/1213-7243.2015.153
%G en
%F 10_14712_1213_7243_2015_153
Kryštof, Václav; Zajíček, Luděk. Differences of two semiconvex functions on the real line. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 21-37. doi : 10.14712/1213-7243.2015.153. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.153/

Cité par Sources :