Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 103-122.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the result on Baire classification of mappings $f:X\times Y\to Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma$-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\to Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\to Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\to Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\to Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\to Z$, is constructed.
DOI : 10.14712/1213-7243.2015.152
Classification : 26B05, 54C05, 54C08
Keywords: diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly $\sigma$-metrizable space
@article{10_14712_1213_7243_2015_152,
     author = {Karlova, Olena and Mykhaylyuk, Volodymyr and Sobchuk, Oleksandr},
     title = {Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {103--122},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2016},
     doi = {10.14712/1213-7243.2015.152},
     mrnumber = {3478344},
     zbl = {06562201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.152/}
}
TY  - JOUR
AU  - Karlova, Olena
AU  - Mykhaylyuk, Volodymyr
AU  - Sobchuk, Oleksandr
TI  - Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 103
EP  - 122
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.152/
DO  - 10.14712/1213-7243.2015.152
LA  - en
ID  - 10_14712_1213_7243_2015_152
ER  - 
%0 Journal Article
%A Karlova, Olena
%A Mykhaylyuk, Volodymyr
%A Sobchuk, Oleksandr
%T Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 103-122
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.152/
%R 10.14712/1213-7243.2015.152
%G en
%F 10_14712_1213_7243_2015_152
Karlova, Olena; Mykhaylyuk, Volodymyr; Sobchuk, Oleksandr. Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 103-122. doi : 10.14712/1213-7243.2015.152. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.152/

Cité par Sources :