A continuum $X$ such that $C(X)$ is not continuously homogeneous
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 97-101.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A metric continuum $X$ is said to be continuously homogeneous provided that for every two points $p,q\in X$ there exists a continuous surjective function $f:X\rightarrow X$ such that $f(p)=q$. Answering a question by W.J. Charatonik and Z. Garncarek, in this paper we show a continuum $X$ such that the hyperspace of subcontinua of $X$, $C(X)$, is not continuously homogeneous.
DOI : 10.14712/1213-7243.2015.146
Classification : 54B20, 54F15
Keywords: continuum; continuously homogeneous; hyperspace
@article{10_14712_1213_7243_2015_146,
     author = {Illanes, Alejandro},
     title = {A continuum $X$ such that $C(X)$ is not continuously homogeneous},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2016},
     doi = {10.14712/1213-7243.2015.146},
     mrnumber = {3478343},
     zbl = {06562200},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.146/}
}
TY  - JOUR
AU  - Illanes, Alejandro
TI  - A continuum $X$ such that $C(X)$ is not continuously homogeneous
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 97
EP  - 101
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.146/
DO  - 10.14712/1213-7243.2015.146
LA  - en
ID  - 10_14712_1213_7243_2015_146
ER  - 
%0 Journal Article
%A Illanes, Alejandro
%T A continuum $X$ such that $C(X)$ is not continuously homogeneous
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 97-101
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.146/
%R 10.14712/1213-7243.2015.146
%G en
%F 10_14712_1213_7243_2015_146
Illanes, Alejandro. A continuum $X$ such that $C(X)$ is not continuously homogeneous. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 97-101. doi : 10.14712/1213-7243.2015.146. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.146/

Cité par Sources :