The Rothberger property on $C_p(\Psi(\mathcal A),2)$
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 83-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is said to have the Rothberger property (or simply $X$ is Rothberger) if for every sequence $\langle\,\mathcal U_n:n\in \omega\,\rangle$ of open covers of $X$, there exists $U_n\in \mathcal U_n$ for each $n\in\omega$ such that $X = \bigcup_{n\in \omega}U_n$. For any $n\in \omega$, necessary and sufficient conditions are obtained for $C_p(\Psi(\mathcal A),2)^n$ to have the Rothberger property when $\mathcal A$ is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family $\mathcal A$ for which the space $C_p(\Psi(\mathcal A),2)^n\,$ is Rothberger for all $n\in\omega$.
DOI : 10.14712/1213-7243.2015.145
Classification : 03G10, 54C35, 54C45, 54D35, 54D45
Keywords: function spaces; $C_p(X, Y)$; Rothberger spaces; $\Psi$-space
@article{10_14712_1213_7243_2015_145,
     author = {Bernal-Santos, Daniel},
     title = {The {Rothberger} property on $C_p(\Psi(\mathcal A),2)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2016},
     doi = {10.14712/1213-7243.2015.145},
     mrnumber = {3478341},
     zbl = {06562198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.145/}
}
TY  - JOUR
AU  - Bernal-Santos, Daniel
TI  - The Rothberger property on $C_p(\Psi(\mathcal A),2)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 83
EP  - 88
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.145/
DO  - 10.14712/1213-7243.2015.145
LA  - en
ID  - 10_14712_1213_7243_2015_145
ER  - 
%0 Journal Article
%A Bernal-Santos, Daniel
%T The Rothberger property on $C_p(\Psi(\mathcal A),2)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 83-88
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.145/
%R 10.14712/1213-7243.2015.145
%G en
%F 10_14712_1213_7243_2015_145
Bernal-Santos, Daniel. The Rothberger property on $C_p(\Psi(\mathcal A),2)$. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 1, pp. 83-88. doi : 10.14712/1213-7243.2015.145. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.145/

Cité par Sources :