Semicommutativity of the rings relative to prime radical
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 4, pp. 401-415.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called $P$-semicommutative. We prove that a ring $R$ is $P$-semicommutative if and only if $R[x]$ is $P$-semicommutative if and only if $R[x, x^{-1}]$ is $P$-semicommutative. Also, if $R[[x]]$ is $P$-semicommutative, then $R$ is $P$-semicommutative. The converse holds provided that $P(R)$ is nilpotent and $R$ is power serieswise Armendariz. For each positive integer $n$, $R$ is $P$-semicommutative if and only if $T_n(R)$ is $P$-semicommutative. For a ring $R$ of bounded index $2$ and a central nilpotent element $s$, $R$ is $P$-semicommutative if and only if $K_s(R)$ is $P$-semicommutative. If $T$ is the ring of a Morita context $(A,B,M,N,\psi,\varphi)$ with zero pairings, then $T$ is $P$-semicommutative if and only if $A$ and $B$ are $P$-semicommutative. Many classes of such rings are constructed as well. We also show that the notions of clean rings and exchange rings coincide for $P$-semicommutative rings.
DOI : 10.14712/1213-7243.2015.140
Classification : 16S50, 16U99
Keywords: semicommutative ring; $P$-semicommutative ring; prime radical of a ring
@article{10_14712_1213_7243_2015_140,
     author = {Kose, Handan and Ungor, Burcu},
     title = {Semicommutativity of the rings relative to prime radical},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {401--415},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2015},
     doi = {10.14712/1213-7243.2015.140},
     mrnumber = {3434221},
     zbl = {06537716},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.140/}
}
TY  - JOUR
AU  - Kose, Handan
AU  - Ungor, Burcu
TI  - Semicommutativity of the rings relative to prime radical
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 401
EP  - 415
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.140/
DO  - 10.14712/1213-7243.2015.140
LA  - en
ID  - 10_14712_1213_7243_2015_140
ER  - 
%0 Journal Article
%A Kose, Handan
%A Ungor, Burcu
%T Semicommutativity of the rings relative to prime radical
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 401-415
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.140/
%R 10.14712/1213-7243.2015.140
%G en
%F 10_14712_1213_7243_2015_140
Kose, Handan; Ungor, Burcu. Semicommutativity of the rings relative to prime radical. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 4, pp. 401-415. doi : 10.14712/1213-7243.2015.140. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.140/

Cité par Sources :