Antiflexible Latin directed triple systems
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 4, pp. 417-431.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well known that given a Steiner triple system one can define a quasigroup operation $\cdot$ upon its base set by assigning $x \cdot x = x$ for all $x$ and $x \cdot y = z$, where $z$ is the third point in the block containing the pair $\{x,y\}$. The same can be done for Mendelsohn triple systems, where $(x,y)$ is considered to be ordered. But this is not necessarily the case for directed triple systems. However there do exist directed triple systems, which induce a quasigroup under this operation and these are called Latin directed triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems satisfy the flexible law $y \cdot (x \cdot y) = (y \cdot x) \cdot y$ but those associated with Latin directed triple systems need not. In this paper we study the Latin directed triple systems where the flexible identity holds for the least possible number of ordered pairs $(x, y)$. We describe their geometry, present a surprisingly simple cyclic construction and prove that they exist if and only if the order $n$ is $n\equiv 0$ or $1\pmod{3}$ and $n\geq 13$.
DOI : 10.14712/1213-7243.2015.134
Classification : 05B07, 20N05
Keywords: directed triple system; quasigroup
@article{10_14712_1213_7243_2015_134,
     author = {Kozlik, Andrew R.},
     title = {Antiflexible {Latin} directed triple systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {417--431},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2015},
     doi = {10.14712/1213-7243.2015.134},
     mrnumber = {3434222},
     zbl = {06537717},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.134/}
}
TY  - JOUR
AU  - Kozlik, Andrew R.
TI  - Antiflexible Latin directed triple systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 417
EP  - 431
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.134/
DO  - 10.14712/1213-7243.2015.134
LA  - en
ID  - 10_14712_1213_7243_2015_134
ER  - 
%0 Journal Article
%A Kozlik, Andrew R.
%T Antiflexible Latin directed triple systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 417-431
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.134/
%R 10.14712/1213-7243.2015.134
%G en
%F 10_14712_1213_7243_2015_134
Kozlik, Andrew R. Antiflexible Latin directed triple systems. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 4, pp. 417-431. doi : 10.14712/1213-7243.2015.134. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.134/

Cité par Sources :