Module-valued functors preserving the covering dimension
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 3, pp. 377-399.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove a general theorem about preservation of the covering dimension $\operatorname{dim}$ by certain covariant functors that implies, among others, the following concrete results. \begin{enumerate} \item[(i)] If $G$ is a pathwise connected separable metric NSS abelian group and $X$, $Y$ are Tychonoff spaces such that the group-valued function spaces $C_p(X,G)$ and $C_p(Y,G)$ are topologically isomorphic as topological groups, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(ii)] If free precompact abelian groups of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(iii)] If $R$ is a topological ring with a countable network and the free topological $R$-modules of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \end{enumerate} The classical result of Pestov [The coincidence of the dimensions dim of $l$-equivalent spaces, Soviet Math. Dokl. 26 (1982), no. 2, 380--383] about preservation of the covering dimension by $l$-equivalence immediately follows from item (i) by taking the topological group of real numbers as $G$.
DOI : 10.14712/1213-7243.2015.131
Classification : 54H11, 54H13
Keywords: covering dimension; topological group; function space; topology of pointwise convergence; free topological module; $l$-equivalence; $G$-equivalence
@article{10_14712_1213_7243_2015_131,
     author = {Sp\v{e}v\'ak, Jan},
     title = {Module-valued functors preserving the covering dimension},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {377--399},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2015},
     doi = {10.14712/1213-7243.2015.131},
     mrnumber = {3390284},
     zbl = {06487001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.131/}
}
TY  - JOUR
AU  - Spěvák, Jan
TI  - Module-valued functors preserving the covering dimension
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 377
EP  - 399
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.131/
DO  - 10.14712/1213-7243.2015.131
LA  - en
ID  - 10_14712_1213_7243_2015_131
ER  - 
%0 Journal Article
%A Spěvák, Jan
%T Module-valued functors preserving the covering dimension
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 377-399
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.131/
%R 10.14712/1213-7243.2015.131
%G en
%F 10_14712_1213_7243_2015_131
Spěvák, Jan. Module-valued functors preserving the covering dimension. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 3, pp. 377-399. doi : 10.14712/1213-7243.2015.131. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.131/

Cité par Sources :