On the number of binary signed digit representations of a given weight
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 3, pp. 287-306.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Binary signed digit representations (BSDR's) of integers have been studied since the 1950's. Their study was originally motivated by multiplication and division algorithms for integers and later by arithmetics on elliptic curves. Our paper is motivated by differential cryptanalysis of hash functions. We give an upper bound for the number of BSDR's of a given weight. Our result improves the upper bound on the number of BSDR's with minimal weight stated by Grabner and Heuberger in On the number of optimal base $2$ representations, Des. Codes Cryptogr. 40 (2006), 25--39, and introduce a new recursive upper bound for the number of BSDR's of any given weight.
DOI : 10.14712/1213-7243.2015.129
Classification : 11A63, 68R01
Keywords: binary signed digit representation; NAF; minimal weight
@article{10_14712_1213_7243_2015_129,
     author = {T\r{u}ma, Ji\v{r}{\'\i} and V\'abek, Ji\v{r}{\'\i}},
     title = {On the number of binary signed digit representations of a given weight},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {287--306},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2015},
     doi = {10.14712/1213-7243.2015.129},
     mrnumber = {3390277},
     zbl = {06486994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.129/}
}
TY  - JOUR
AU  - Tůma, Jiří
AU  - Vábek, Jiří
TI  - On the number of binary signed digit representations of a given weight
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 287
EP  - 306
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.129/
DO  - 10.14712/1213-7243.2015.129
LA  - en
ID  - 10_14712_1213_7243_2015_129
ER  - 
%0 Journal Article
%A Tůma, Jiří
%A Vábek, Jiří
%T On the number of binary signed digit representations of a given weight
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 287-306
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.129/
%R 10.14712/1213-7243.2015.129
%G en
%F 10_14712_1213_7243_2015_129
Tůma, Jiří; Vábek, Jiří. On the number of binary signed digit representations of a given weight. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 3, pp. 287-306. doi : 10.14712/1213-7243.2015.129. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.129/

Cité par Sources :