Symmetric products of the Euclidean spaces and the spheres
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 2, pp. 209-221.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By $F_n(X)$, $n \geq 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.
DOI : 10.14712/1213-7243.2015.118
Classification : 30C65, 30L10, 54B10, 54B20, 54E35
Keywords: isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere
@article{10_14712_1213_7243_2015_118,
     author = {Chinen, Naotsugu},
     title = {Symmetric products of the {Euclidean} spaces and the spheres},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2015},
     doi = {10.14712/1213-7243.2015.118},
     mrnumber = {3338733 Reviewed Chinen, Naot},
     zbl = {06433818},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.118/}
}
TY  - JOUR
AU  - Chinen, Naotsugu
TI  - Symmetric products of the Euclidean spaces and the spheres
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 209
EP  - 221
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.118/
DO  - 10.14712/1213-7243.2015.118
LA  - en
ID  - 10_14712_1213_7243_2015_118
ER  - 
%0 Journal Article
%A Chinen, Naotsugu
%T Symmetric products of the Euclidean spaces and the spheres
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 209-221
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.118/
%R 10.14712/1213-7243.2015.118
%G en
%F 10_14712_1213_7243_2015_118
Chinen, Naotsugu. Symmetric products of the Euclidean spaces and the spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 2, pp. 209-221. doi : 10.14712/1213-7243.2015.118. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.118/

Cité par Sources :