On finite commutative loops which are centrally nilpotent
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 2, pp. 139-143.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $Q$ be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^n} \times C_{p^n}$, where $p$ is an odd prime number and $n \geq 1$. We show that $Q$ is centrally nilpotent of class two.
DOI : 10.14712/1213-7243.2015.113
Classification : 20D15, 20N05
Keywords: loop; inner mapping group; centrally nilpotent loop
@article{10_14712_1213_7243_2015_113,
     author = {Lepp\"al\"a, Emma and Niemenmaa, Markku},
     title = {On finite commutative loops which are centrally nilpotent},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2015},
     doi = {10.14712/1213-7243.2015.113},
     mrnumber = {3338728},
     zbl = {06433813},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.113/}
}
TY  - JOUR
AU  - Leppälä, Emma
AU  - Niemenmaa, Markku
TI  - On finite commutative loops which are centrally nilpotent
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 139
EP  - 143
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.113/
DO  - 10.14712/1213-7243.2015.113
LA  - en
ID  - 10_14712_1213_7243_2015_113
ER  - 
%0 Journal Article
%A Leppälä, Emma
%A Niemenmaa, Markku
%T On finite commutative loops which are centrally nilpotent
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 139-143
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.113/
%R 10.14712/1213-7243.2015.113
%G en
%F 10_14712_1213_7243_2015_113
Leppälä, Emma; Niemenmaa, Markku. On finite commutative loops which are centrally nilpotent. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 2, pp. 139-143. doi : 10.14712/1213-7243.2015.113. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.113/

Cité par Sources :