On isometrical extension properties of function spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta)$, where $Q$ and $\Delta$ denote the Hilbert cube $[0,1]^{\infty}$ and a Cantor set, respectively.
DOI : 10.14712/1213-7243.015.109
Classification : 46B04, 54C35, 54H20
Keywords: linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set
@article{10_14712_1213_7243_015_109,
     author = {Kato, Hisao},
     title = {On isometrical extension properties of function spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2015},
     doi = {10.14712/1213-7243.015.109},
     mrnumber = {3311581},
     zbl = {06433809},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.015.109/}
}
TY  - JOUR
AU  - Kato, Hisao
TI  - On isometrical extension properties of function spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2015
SP  - 105
EP  - 115
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.015.109/
DO  - 10.14712/1213-7243.015.109
LA  - en
ID  - 10_14712_1213_7243_015_109
ER  - 
%0 Journal Article
%A Kato, Hisao
%T On isometrical extension properties of function spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2015
%P 105-115
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.015.109/
%R 10.14712/1213-7243.015.109
%G en
%F 10_14712_1213_7243_015_109
Kato, Hisao. On isometrical extension properties of function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 56 (2015) no. 1, pp. 105-115. doi : 10.14712/1213-7243.015.109. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.015.109/

Cité par Sources :