Properties of efficient sequential plans for a birth and death process
Mathematica Applicanda, Tome 9 (1981) no. 17, pp. 83-93.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

A birth and death process with parameters θ=(λ,μ), λ>0, μ>0, is considered. The absolute continuity of measures generated by this process is proved. The Rao-Cramér inequality for the variance of the unbiased estimator of a function h(θ) is derived. Some properties of the estimator attaining the Rao-Cramér lower bound are asserted.
DOI : 10.14708/ma.v9i17.1518
Classification : 62L12(62M05)
Mots-clés : Sequential estimation,Markov processes: estimation
@article{10_14708_ma_v9i17_1518,
     author = {Roman R\'o\.za\'nski},
     title = {Properties of efficient sequential plans for a birth and death process},
     journal = {Mathematica Applicanda},
     pages = { 83--93},
     publisher = {mathdoc},
     volume = {9},
     number = {17},
     year = {1981},
     doi = {10.14708/ma.v9i17.1518},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1518/}
}
TY  - JOUR
AU  - Roman Różański
TI  - Properties of efficient sequential plans for a birth and death process
JO  - Mathematica Applicanda
PY  - 1981
SP  -  83
EP  - 93
VL  - 9
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1518/
DO  - 10.14708/ma.v9i17.1518
LA  - pl
ID  - 10_14708_ma_v9i17_1518
ER  - 
%0 Journal Article
%A Roman Różański
%T Properties of efficient sequential plans for a birth and death process
%J Mathematica Applicanda
%D 1981
%P  83-93
%V 9
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1518/
%R 10.14708/ma.v9i17.1518
%G pl
%F 10_14708_ma_v9i17_1518
Roman Różański. Properties of efficient sequential plans for a birth and death process. Mathematica Applicanda, Tome 9 (1981) no. 17, pp.  83-93. doi : 10.14708/ma.v9i17.1518. http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1518/

Cité par Sources :