Poisson's theorem
Mathematica Applicanda, Tome 9 (1981) no. 17, pp. 39-53.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The authors present three methods for proving Poisson's theorem. The first method is based on papers of L. Takács [J. Amer. Statist. Assoc. 62 (1967), 102–113; MR0217832] and J. Galambos [J. Appl. Probab. 11 (1974), 219–222; MR0358923], the second uses results of D. A. Freedman [Ann. Probab. 2 (1974), 256–269; MR0370694] and M. R. Leadbetter [Z. Wahrsch. Verw. Gebiete 28 (1973/74), 298–309; MR0362465], and the third method follows the considerations contained in another paper by Galambos [ibid. 32 (1975), no. 3, 197–207; MR0380941]. The paper contains known theorems but some of the proofs are new.
DOI : 10.14708/ma.v9i17.1515
Classification : 60F05(60G99)
Mots-clés : Central limit and other weak theorems
@article{10_14708_ma_v9i17_1515,
     author = {Wies{\l}aw Dziubdziela and Ma{\l}gorzata Romanowska},
     title = {Poisson's theorem},
     journal = {Mathematica Applicanda},
     pages = { 39--53},
     publisher = {mathdoc},
     volume = {9},
     number = {17},
     year = {1981},
     doi = {10.14708/ma.v9i17.1515},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1515/}
}
TY  - JOUR
AU  - Wiesław Dziubdziela
AU  - Małgorzata Romanowska
TI  - Poisson's theorem
JO  - Mathematica Applicanda
PY  - 1981
SP  -  39
EP  - 53
VL  - 9
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1515/
DO  - 10.14708/ma.v9i17.1515
LA  - pl
ID  - 10_14708_ma_v9i17_1515
ER  - 
%0 Journal Article
%A Wiesław Dziubdziela
%A Małgorzata Romanowska
%T Poisson's theorem
%J Mathematica Applicanda
%D 1981
%P  39-53
%V 9
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1515/
%R 10.14708/ma.v9i17.1515
%G pl
%F 10_14708_ma_v9i17_1515
Wiesław Dziubdziela; Małgorzata Romanowska. Poisson's theorem. Mathematica Applicanda, Tome 9 (1981) no. 17, pp.  39-53. doi : 10.14708/ma.v9i17.1515. http://geodesic.mathdoc.fr/articles/10.14708/ma.v9i17.1515/

Cité par Sources :