Predators and prey
Mathematica Applicanda, Tome 7 (1979) no. 15, pp. 81-91.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This article presents the basic conclusions contained in the English-language papers by the author [Math. Biosci. 33 (1977), no. 1–2, 135–144; MR0682243] and by the author and W. J. Bühler [ibid. 38 (1978), no. 3–4, 293–301; MR0479452] on the probability of extinction of the prey in a bivariate Markov chain model (Xk,Yk) for the number of prey Xk and number of predators Yk at time kT, k≥0, imbedded in a complex continuous-time process.
DOI : 10.14708/ma.v7i15.1481
Classification : 60J80(92A15)
Mots-clés : branching processes (Galton-Watson, birth-and-death, etc.);Population dynamics, epidemiology
@article{10_14708_ma_v7i15_1481,
     author = {Robert Bartoszy\'nski},
     title = {Predators and prey},
     journal = {Mathematica Applicanda},
     pages = { 81--91},
     publisher = {mathdoc},
     volume = {7},
     number = {15},
     year = {1979},
     doi = {10.14708/ma.v7i15.1481},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1481/}
}
TY  - JOUR
AU  - Robert Bartoszyński
TI  - Predators and prey
JO  - Mathematica Applicanda
PY  - 1979
SP  -  81
EP  - 91
VL  - 7
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1481/
DO  - 10.14708/ma.v7i15.1481
LA  - pl
ID  - 10_14708_ma_v7i15_1481
ER  - 
%0 Journal Article
%A Robert Bartoszyński
%T Predators and prey
%J Mathematica Applicanda
%D 1979
%P  81-91
%V 7
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1481/
%R 10.14708/ma.v7i15.1481
%G pl
%F 10_14708_ma_v7i15_1481
Robert Bartoszyński. Predators and prey. Mathematica Applicanda, Tome 7 (1979) no. 15, pp.  81-91. doi : 10.14708/ma.v7i15.1481. http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1481/

Cité par Sources :