Alternating direction Galerkin method for quasilinear parabolic equations
Mathematica Applicanda, Tome 7 (1979) no. 15, pp. 5-23
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
Consider the following parabolic equation: (1) ∂u/∂t−∑2i=1(d/dxi)ai(x,t,u,D1u,D2u)+a0(x,t,u,D1u,D2u)=f(x,t), x=(x1,x2)∈Ω⊂R2, t∈[0,T], with the initial value condition u(x,0)=u0(x), x∈Ω, and with the boundary value condition u(x,t)=0, x∈∂Ω, t∈[0,T]. For the solution of equation (1) the author proposes a variational-difference method. Namely, he approximates equation (1) by Galerkin's method with respect to the variables x1,x2 and by the finite-difference method with respect to the variable t. Under some assumptions concerning the coefficients ai, i=0,1,2, an estimate of the error is given.
Classification :
65N30
Mots-clés : Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
Mots-clés : Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
@article{10_14708_ma_v7i15_1476,
author = {M. Dryja},
title = {Alternating direction {Galerkin} method for quasilinear parabolic equations},
journal = {Mathematica Applicanda},
pages = { 5--23},
year = {1979},
volume = {7},
number = {15},
doi = {10.14708/ma.v7i15.1476},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1476/}
}
TY - JOUR AU - M. Dryja TI - Alternating direction Galerkin method for quasilinear parabolic equations JO - Mathematica Applicanda PY - 1979 SP - 5 EP - 23 VL - 7 IS - 15 UR - http://geodesic.mathdoc.fr/articles/10.14708/ma.v7i15.1476/ DO - 10.14708/ma.v7i15.1476 LA - pl ID - 10_14708_ma_v7i15_1476 ER -
M. Dryja. Alternating direction Galerkin method for quasilinear parabolic equations. Mathematica Applicanda, Tome 7 (1979) no. 15, pp. 5-23. doi: 10.14708/ma.v7i15.1476
Cité par Sources :