Approximate sums of squares in analysis of variance
Mathematica Applicanda, Tome 5 (1977) no. 10, pp. 71-78.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Consider the two-way crossed classification model, in which there are a levels of the factor A, b levels of the factor B and nij observations y(i,j,k), k=1,⋯,n(i,j), for the (i,j)th cell, i=1,⋯,a, j=1,⋯,b. The sum of squares for testing interactions in this model can be written as Q=∑(i,j)n(i,j)(y(i,j,⋅)/n(i,j)−y(i,⋅,⋅)/n(i,⋅)−y(⋅,j,⋅)/n(j,⋅)+y(⋅,⋅,⋅)/n(⋅,⋅))^2, where y(i,j,⋅)=∑(k)y(i,j,k), y(i,⋅,⋅)=∑(j)y(i,j,⋅), y(⋅,j,⋅)=∑(i)y(i,j,⋅), y(⋅,⋅,⋅)=∑(i)y(i,⋅,⋅), n(i,⋅)=∑(j)n(i,j), n(⋅,j)=∑(i)n(i,j) and n(⋅,⋅)=∑(i)n(i,⋅). It is well known that if the numbers of observations are proportional, i.e., if (1) n(i,j)=n(i,⋅)n(⋅,j)/n(⋅,⋅) for all i=1,⋯,a and j=1,⋯,b, then the quadratic form Q(0)=∑(i,j)y(i,j,⋅)^2/n(i,j)−∑(i)y(i,⋅,⋅)^2/n(i,⋅)−∑(j)y^2(⋅,j,⋅)/n(⋅,j)+y^2(⋅,⋅,⋅)/n(⋅,⋅) is nonnegative definite, being then identical with Q. The author proves the converse of this implication; he shows that the nonnegative definiteness of Q0 implies the proportionality condition (1). He considers a similar problem also for the case of the three-way crossed classification model.
DOI : 10.14708/ma.v5i10.1257
Classification : 62J10
Mots-clés : Analysis of variance and covariance
@article{10_14708_ma_v5i10_1257,
     author = {Czes{\l}aw St\k{e}pniak},
     title = {Approximate sums of squares in analysis of variance},
     journal = {Mathematica Applicanda},
     pages = { 71--78},
     publisher = {mathdoc},
     volume = {5},
     number = {10},
     year = {1977},
     doi = {10.14708/ma.v5i10.1257},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v5i10.1257/}
}
TY  - JOUR
AU  - Czesław Stępniak
TI  - Approximate sums of squares in analysis of variance
JO  - Mathematica Applicanda
PY  - 1977
SP  -  71
EP  - 78
VL  - 5
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v5i10.1257/
DO  - 10.14708/ma.v5i10.1257
LA  - pl
ID  - 10_14708_ma_v5i10_1257
ER  - 
%0 Journal Article
%A Czesław Stępniak
%T Approximate sums of squares in analysis of variance
%J Mathematica Applicanda
%D 1977
%P  71-78
%V 5
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v5i10.1257/
%R 10.14708/ma.v5i10.1257
%G pl
%F 10_14708_ma_v5i10_1257
Czesław Stępniak. Approximate sums of squares in analysis of variance. Mathematica Applicanda, Tome 5 (1977) no. 10, pp.  71-78. doi : 10.14708/ma.v5i10.1257. http://geodesic.mathdoc.fr/articles/10.14708/ma.v5i10.1257/

Cité par Sources :