Lucas-type associated polynomials
Mathematica Applicanda, Tome 51 (2023) no. 2, pp. 291-304.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper, we define a new type of Lucas polynomials known as Lucas-type associated polynomials and investigate their fundamental properties and identities. An interesting formula for Lucas-type associated polynomials can be derived using Leibniz's rule for derivatives, defined by Rodrigue's Lucas-type formula. Additionally, we establish an integral connection between Lucas-type associated polynomials and associated Fibonacci polynomials.
DOI : 10.14708/ma.v51i2.7264
Classification : Primary: 05A19, Secondary: 11B83
Mots-clés : Fibonacci polynomials, Lucas polynomials, associated Lucas polynomials, explicit formulas, generating functions.
@article{10_14708_ma_v51i2_7264,
     author = {Ghania Guettai and Diffalah Laissaoui and Mourad Rahmani},
     title = {Lucas-type associated polynomials},
     journal = {Mathematica Applicanda},
     pages = { 291--304},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2023},
     doi = {10.14708/ma.v51i2.7264},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7264/}
}
TY  - JOUR
AU  - Ghania Guettai
AU  - Diffalah Laissaoui
AU  - Mourad Rahmani
TI  - Lucas-type associated polynomials
JO  - Mathematica Applicanda
PY  - 2023
SP  -  291
EP  - 304
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7264/
DO  - 10.14708/ma.v51i2.7264
LA  - pl
ID  - 10_14708_ma_v51i2_7264
ER  - 
%0 Journal Article
%A Ghania Guettai
%A Diffalah Laissaoui
%A Mourad Rahmani
%T Lucas-type associated polynomials
%J Mathematica Applicanda
%D 2023
%P  291-304
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7264/
%R 10.14708/ma.v51i2.7264
%G pl
%F 10_14708_ma_v51i2_7264
Ghania Guettai; Diffalah Laissaoui; Mourad Rahmani. Lucas-type associated polynomials. Mathematica Applicanda, Tome 51 (2023) no. 2, pp.  291-304. doi : 10.14708/ma.v51i2.7264. http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7264/

Cité par Sources :