On the Poisson XLindley process
Mathematica Applicanda, Tome 51 (2023) no. 2, pp. 273-289.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Due to their advantages, non-homogeneous Poisson processes have so far been used extensively in a variety of practical applications. They do, however, also have important application-related limits. A novel counting process model named the Poisson–XLindley Process was created to get around these restrictions. We shall demonstrate that this new model lacks such constraints. These fundamental stochastic properties of the process are derived. Additionally, the dependence structure is examined along with the new idea of positively dependent increments. Generic versions of several of the features derived in this article will be offered. This is an innovative concept related to counting processes, which allows the probability function to be described explicitly. It is one of its major contributions
DOI : 10.14708/ma.v51i2.7200
Classification : 62J05, 92D20
Mots-clés : Poisson process, Poisson XLindley process, Positive dependence, Stochastic processes, stochastic properties
@article{10_14708_ma_v51i2_7200,
     author = {Amine Sakri and Fatma-Zohra Seghier and Raman Rangan Vinoth and Halim Zeghdoudi},
     title = {On the {Poisson} {XLindley} process},
     journal = {Mathematica Applicanda},
     pages = { 273--289},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2023},
     doi = {10.14708/ma.v51i2.7200},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7200/}
}
TY  - JOUR
AU  - Amine Sakri
AU  - Fatma-Zohra Seghier
AU  - Raman Rangan Vinoth
AU  - Halim Zeghdoudi
TI  - On the Poisson XLindley process
JO  - Mathematica Applicanda
PY  - 2023
SP  -  273
EP  - 289
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7200/
DO  - 10.14708/ma.v51i2.7200
LA  - pl
ID  - 10_14708_ma_v51i2_7200
ER  - 
%0 Journal Article
%A Amine Sakri
%A Fatma-Zohra Seghier
%A Raman Rangan Vinoth
%A Halim Zeghdoudi
%T On the Poisson XLindley process
%J Mathematica Applicanda
%D 2023
%P  273-289
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7200/
%R 10.14708/ma.v51i2.7200
%G pl
%F 10_14708_ma_v51i2_7200
Amine Sakri; Fatma-Zohra Seghier; Raman Rangan Vinoth; Halim Zeghdoudi. On the Poisson XLindley process. Mathematica Applicanda, Tome 51 (2023) no. 2, pp.  273-289. doi : 10.14708/ma.v51i2.7200. http://geodesic.mathdoc.fr/articles/10.14708/ma.v51i2.7200/

Cité par Sources :