On the one-dimensional mean-field games with congestion
Mathematica Applicanda, Tome 50 (2022) no. 1, pp. 139-151.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this work, we consider a one dimensional forward-forward model of Mean-field Games with congestion. We establish a connection between such models and conservation laws. Next, we show the existence of a non trivial convex entropies. Finally, we investigate the existence of solutions in the parabolic case and derived some estimates thanks to the existence of such convex entropies.
DOI : 10.14708/ma.v50i1.7136
Mots-clés : Mean field games, conservation laws, Hamilton Jacobi, transport equations
@article{10_14708_ma_v50i1_7136,
     author = {Marc Sedjro},
     title = {On the one-dimensional mean-field games with congestion},
     journal = {Mathematica Applicanda},
     pages = { 139--151},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2022},
     doi = {10.14708/ma.v50i1.7136},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7136/}
}
TY  - JOUR
AU  - Marc Sedjro
TI  - On the one-dimensional mean-field games with congestion
JO  - Mathematica Applicanda
PY  - 2022
SP  -  139
EP  - 151
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7136/
DO  - 10.14708/ma.v50i1.7136
LA  - pl
ID  - 10_14708_ma_v50i1_7136
ER  - 
%0 Journal Article
%A Marc Sedjro
%T On the one-dimensional mean-field games with congestion
%J Mathematica Applicanda
%D 2022
%P  139-151
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7136/
%R 10.14708/ma.v50i1.7136
%G pl
%F 10_14708_ma_v50i1_7136
Marc Sedjro. On the one-dimensional mean-field games with congestion. Mathematica Applicanda, Tome 50 (2022) no. 1, pp.  139-151. doi : 10.14708/ma.v50i1.7136. http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7136/

Cité par Sources :