The Bushell-Okrasiński inequality
Mathematica Applicanda, Tome 50 (2022) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We present an expository account of the Bushell-Okrasiński inequality, the motivation behind it, its history, and several generalizations. This inequality originally appeared in studies of nonlinear Volterra equations but very soon gained interest of its own. The basic result has quickly been generalized and extended in different directions strengthening the assertion, generalizing the kernel and nonlinearity, providing the optimal prefactor, finding conditions under which it becomes an equality, and formulating variations valid for other than Lebesgue integrals. We review all of these aspects.
DOI : 10.14708/ma.v50i1.7130
Classification : 26D15, 45D05
Mots-clés : Bushell-Okrasiński inequality, reversed Jensen inequality, nonlinear Volterra equations
@article{10_14708_ma_v50i1_7130,
     author = {{\L}ukasz P{\l}ociniczak},
     title = {The {Bushell-Okrasi\'nski} inequality},
     journal = {Mathematica Applicanda},
     pages = { 3--22},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2022},
     doi = {10.14708/ma.v50i1.7130},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7130/}
}
TY  - JOUR
AU  - Łukasz Płociniczak
TI  - The Bushell-Okrasiński inequality
JO  - Mathematica Applicanda
PY  - 2022
SP  -  3
EP  - 22
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7130/
DO  - 10.14708/ma.v50i1.7130
LA  - pl
ID  - 10_14708_ma_v50i1_7130
ER  - 
%0 Journal Article
%A Łukasz Płociniczak
%T The Bushell-Okrasiński inequality
%J Mathematica Applicanda
%D 2022
%P  3-22
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7130/
%R 10.14708/ma.v50i1.7130
%G pl
%F 10_14708_ma_v50i1_7130
Łukasz Płociniczak. The Bushell-Okrasiński inequality. Mathematica Applicanda, Tome 50 (2022) no. 1, pp.  3-22. doi : 10.14708/ma.v50i1.7130. http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7130/

Cité par Sources :