A coding theoretical interpretation of Gaussian-Pell polynomials
Mathematica Applicanda, Tome 50 (2022) no. 1, pp. 129-138.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper, we establish a new result followed from Gaussian Pell polynomials matrix, Qn(x)P(x) (cf. Serpil and Sinan (2018)) whose elements are Gaussian Pell polynomials and we develop new coding and decoding method follow from Gaussian Pell polynomials matrix, Qn(x)P(x). The correction ability of this method is 93:33%.
DOI : 10.14708/ma.v50i1.7101
Classification : 11B39, 11R52
Mots-clés : Pell numbers, Silver mean, Gaussian Pell polynomials
@article{10_14708_ma_v50i1_7101,
     author = {Bandhu Prasad},
     title = {A coding theoretical interpretation of {Gaussian-Pell} polynomials},
     journal = {Mathematica Applicanda},
     pages = { 129--138},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2022},
     doi = {10.14708/ma.v50i1.7101},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7101/}
}
TY  - JOUR
AU  - Bandhu Prasad
TI  - A coding theoretical interpretation of Gaussian-Pell polynomials
JO  - Mathematica Applicanda
PY  - 2022
SP  -  129
EP  - 138
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7101/
DO  - 10.14708/ma.v50i1.7101
LA  - pl
ID  - 10_14708_ma_v50i1_7101
ER  - 
%0 Journal Article
%A Bandhu Prasad
%T A coding theoretical interpretation of Gaussian-Pell polynomials
%J Mathematica Applicanda
%D 2022
%P  129-138
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7101/
%R 10.14708/ma.v50i1.7101
%G pl
%F 10_14708_ma_v50i1_7101
Bandhu Prasad. A coding theoretical interpretation of Gaussian-Pell polynomials. Mathematica Applicanda, Tome 50 (2022) no. 1, pp.  129-138. doi : 10.14708/ma.v50i1.7101. http://geodesic.mathdoc.fr/articles/10.14708/ma.v50i1.7101/

Cité par Sources :