Quadratically admissible estimators in random models.
Mathematica Applicanda, Tome 4 (1976) no. 7, pp. 117-122.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The author is concerned with a random model of the form y=1μ+X1β1+⋯+Xkβk, where 1 is the n-vector of ones, μ is an unknown constant, Xi is an n×pi matrix of known constants, and βi is a pi-vector of random variables. It is assumed that pk and Xk=I the identity matrix of order n, and also that β1 are mutually independent, with βk∼Npi, i=1,⋯,k, where Vk=I, Vi is a known pi nonnegative definite matrix, and σi is an unknown nonnegative parameter, with the additional requirement that σk be strictly positive.
DOI : 10.14708/ma.v4i7.1201
Classification : 62J10
@article{10_14708_ma_v4i7_1201,
     author = {R. Zmy\'slony},
     title = {Quadratically admissible estimators in random models.},
     journal = {Mathematica Applicanda},
     pages = { 117--122},
     publisher = {mathdoc},
     volume = {4},
     number = {7},
     year = {1976},
     doi = {10.14708/ma.v4i7.1201},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i7.1201/}
}
TY  - JOUR
AU  - R. Zmyślony
TI  - Quadratically admissible estimators in random models.
JO  - Mathematica Applicanda
PY  - 1976
SP  -  117
EP  - 122
VL  - 4
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i7.1201/
DO  - 10.14708/ma.v4i7.1201
LA  - pl
ID  - 10_14708_ma_v4i7_1201
ER  - 
%0 Journal Article
%A R. Zmyślony
%T Quadratically admissible estimators in random models.
%J Mathematica Applicanda
%D 1976
%P  117-122
%V 4
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i7.1201/
%R 10.14708/ma.v4i7.1201
%G pl
%F 10_14708_ma_v4i7_1201
R. Zmyślony. Quadratically admissible estimators in random models.. Mathematica Applicanda, Tome 4 (1976) no. 7, pp.  117-122. doi : 10.14708/ma.v4i7.1201. http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i7.1201/

Cité par Sources :