Oblique plans for a binomial process
Mathematica Applicanda, Tome 4 (1976) no. 6, pp. 41-47.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The following random walk (Xt, t=0,1,2,⋯) in the set T= {(x,y):x,y are nonnegative integers} is considered: X0=(0,0), Prob{Xt+1=(x+1,y)|Xt=(x,y)}==1-Prob{Xt+1=(x,y+1)|Xt=p(x,y)}, p∈(0,1) being unknown. For a given B⊂T, define the stopping variable τ=min{t>0:Xt∈B}. A sequential procedure of estimation of a parameter Q=g(p) by a function f(Xτ,τ) is said to be an oblique plan if B is of the form {(x,y):y=(x-k)/s}, where k and s are positive integers. Some properties of estimates in oblique plans are discussed. .
DOI : 10.14708/ma.v4i6.1174
Classification : 62K12
@article{10_14708_ma_v4i6_1174,
     author = {R. Magiera and S. Trybu{\l}a},
     title = {Oblique plans for a binomial process},
     journal = {Mathematica Applicanda},
     pages = { 41--47},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1976},
     doi = {10.14708/ma.v4i6.1174},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i6.1174/}
}
TY  - JOUR
AU  - R. Magiera
AU  - S. Trybuła
TI  - Oblique plans for a binomial process
JO  - Mathematica Applicanda
PY  - 1976
SP  -  41
EP  - 47
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i6.1174/
DO  - 10.14708/ma.v4i6.1174
LA  - pl
ID  - 10_14708_ma_v4i6_1174
ER  - 
%0 Journal Article
%A R. Magiera
%A S. Trybuła
%T Oblique plans for a binomial process
%J Mathematica Applicanda
%D 1976
%P  41-47
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i6.1174/
%R 10.14708/ma.v4i6.1174
%G pl
%F 10_14708_ma_v4i6_1174
R. Magiera; S. Trybuła. Oblique plans for a binomial process. Mathematica Applicanda, Tome 4 (1976) no. 6, pp.  41-47. doi : 10.14708/ma.v4i6.1174. http://geodesic.mathdoc.fr/articles/10.14708/ma.v4i6.1174/

Cité par Sources :