Approximate solutions and numerical analysis of a spring-mass running model
Mathematica Applicanda, Tome 48 (2020) no. 1, pp. 25-48.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We consider the classic spring-mass model of running which is built upon an inverted elastic pendulum. In this paper we introduce new approximate solution of an interesting boundary value problem for the governing system of two nonlinear ordinary differential equations, which in a natural way we get in this model. We give theoretical support by deriving asymptotic behaviour of obtained approximations. Simulations show that new solutions fall out very well. Our results are illustrated with some practical examples.
DOI : 10.14708/ma.v48i1.6507
Classification : 34E05, 34B15
Mots-clés : spring-mass model, running, elastic pendulum, boundary value problem, approximation solution, shooting method
@article{10_14708_ma_v48i1_6507,
     author = {Zofia Wr\'oblewska},
     title = {Approximate solutions and numerical analysis of a spring-mass running model},
     journal = {Mathematica Applicanda},
     pages = { 25--48},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2020},
     doi = {10.14708/ma.v48i1.6507},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v48i1.6507/}
}
TY  - JOUR
AU  - Zofia Wróblewska
TI  - Approximate solutions and numerical analysis of a spring-mass running model
JO  - Mathematica Applicanda
PY  - 2020
SP  -  25
EP  - 48
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v48i1.6507/
DO  - 10.14708/ma.v48i1.6507
LA  - pl
ID  - 10_14708_ma_v48i1_6507
ER  - 
%0 Journal Article
%A Zofia Wróblewska
%T Approximate solutions and numerical analysis of a spring-mass running model
%J Mathematica Applicanda
%D 2020
%P  25-48
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v48i1.6507/
%R 10.14708/ma.v48i1.6507
%G pl
%F 10_14708_ma_v48i1_6507
Zofia Wróblewska. Approximate solutions and numerical analysis of a spring-mass running model. Mathematica Applicanda, Tome 48 (2020) no. 1, pp.  25-48. doi : 10.14708/ma.v48i1.6507. http://geodesic.mathdoc.fr/articles/10.14708/ma.v48i1.6507/

Cité par Sources :