A random walk version of Robbins' problem: small horizon
Mathematica Applicanda, Tome 47 (2019) no. 2, pp. 293-312.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In Robbins' problem of minimizing the expected rank, a finite sequence of $n$ independent, identically distributed random variables are observed sequentially and the objective is to stop at such a time that the expected rank of the selected variable (among the sequence of all $n$ variables) is as small as possible. In this paper we consider an analogous problem in which the observed random variables are the steps of a symmetric random walk. Assuming continuously distributed step sizes, we describe the optimal stopping rules for the cases $n=2$ and $n=3$ in two versions of the problem: a ``full information" version in which the actual steps of the random walk are disclosed to the decision maker; and a ``partial information" version in which only the relative ranks of the positions taken by the random walk are observed. When $n=3$, the optimal rule and expected rank depend on the distribution of the step sizes. We give sharp bounds for the optimal expected rank in the partial information version, and fairly sharp bounds in the full information version.
DOI : 10.14708/ma.v47i2.6477
Classification : 60G40
Mots-clés : Expected rank, Robbins' problem, Stopping time, Symmetric random walk
@article{10_14708_ma_v47i2_6477,
     author = {Pieter Allaart and Andrew Allen},
     title = {A random walk version of {Robbins'} problem: small horizon},
     journal = {Mathematica Applicanda},
     pages = { 293--312},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2019},
     doi = {10.14708/ma.v47i2.6477},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v47i2.6477/}
}
TY  - JOUR
AU  - Pieter Allaart
AU  - Andrew Allen
TI  - A random walk version of Robbins' problem: small horizon
JO  - Mathematica Applicanda
PY  - 2019
SP  -  293
EP  - 312
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v47i2.6477/
DO  - 10.14708/ma.v47i2.6477
LA  - pl
ID  - 10_14708_ma_v47i2_6477
ER  - 
%0 Journal Article
%A Pieter Allaart
%A Andrew Allen
%T A random walk version of Robbins' problem: small horizon
%J Mathematica Applicanda
%D 2019
%P  293-312
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v47i2.6477/
%R 10.14708/ma.v47i2.6477
%G pl
%F 10_14708_ma_v47i2_6477
Pieter Allaart; Andrew Allen. A random walk version of Robbins' problem: small horizon. Mathematica Applicanda, Tome 47 (2019) no. 2, pp.  293-312. doi : 10.14708/ma.v47i2.6477. http://geodesic.mathdoc.fr/articles/10.14708/ma.v47i2.6477/

Cité par Sources :