On the nonlocal discretization of the simplified Anderson-May model of viral infection
Mathematica Applicanda, Tome 46 (2018) no. 1, pp. 109-116.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We present five nonstandard finite difference methods designed for numerical simulation of the simplified Anderson-May model of viral infection. The proposed methods, based solely on the principle of nonlocal discretization, are able to preserve all of the essential qualitative features of the original model: the non-negativity of the solution and local stability of the equilibrium points, along with their stability conditions. One of the proposed methods preserves the types of the equilibrium points (i.e. the presence and absence of oscillations) as well. All of these results are independent of the chosen step-size of simulation.
DOI : 10.14708/ma.v46i1.6395
Classification : 65L12, 65L20
Mots-clés : nonstandard finite difference method, NSFD method, nonlocal discretization, Anderson-May model, viral infection
@article{10_14708_ma_v46i1_6395,
     author = {Adam Korpusik and Marek Bodnar},
     title = {On the nonlocal discretization of the simplified {Anderson-May} model of viral infection},
     journal = {Mathematica Applicanda},
     pages = { 109--116},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2018},
     doi = {10.14708/ma.v46i1.6395},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6395/}
}
TY  - JOUR
AU  - Adam Korpusik
AU  - Marek Bodnar
TI  - On the nonlocal discretization of the simplified Anderson-May model of viral infection
JO  - Mathematica Applicanda
PY  - 2018
SP  -  109
EP  - 116
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6395/
DO  - 10.14708/ma.v46i1.6395
LA  - pl
ID  - 10_14708_ma_v46i1_6395
ER  - 
%0 Journal Article
%A Adam Korpusik
%A Marek Bodnar
%T On the nonlocal discretization of the simplified Anderson-May model of viral infection
%J Mathematica Applicanda
%D 2018
%P  109-116
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6395/
%R 10.14708/ma.v46i1.6395
%G pl
%F 10_14708_ma_v46i1_6395
Adam Korpusik; Marek Bodnar. On the nonlocal discretization of the simplified Anderson-May model of viral infection. Mathematica Applicanda, Tome 46 (2018) no. 1, pp.  109-116. doi : 10.14708/ma.v46i1.6395. http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6395/

Cité par Sources :