Mathematical model of endothelial cell proliferation and maturation
Mathematica Applicanda, Tome 46 (2018) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Blood vessel sprouting (angiogenesis) is one of the hallmarks of cancer. Better quantitative understanding of this process would allow more effective antiangiogenic therapies to be developed. It has been hypothesised that not only the number of endothelial cells, but also the quality of the vasculature play an important role in how chemo- and radiotherapies are delivered to tumour site. Hence in this study a minimally-parametrised mathematical model of endothelial cell proliferation and maturation is developed. Endothelial cells are subdivided into two compartments -- mature and immature (or proliferating). The cells are assumed to undergo a self-mediated maturation, while loss of blood vessel quality is mediated by an external growth factor (here VEGF). The model is fitted to experimental data. The model shows how inhibition of VEGF results in better quality vasculature and slower proliferation.
DOI : 10.14708/ma.v46i1.6383
Classification : 92C50, 37N25, 92B05
Mots-clés : Angiogenesis, mathematical modelling, tumour growth, vascular endothelial growth factor
@article{10_14708_ma_v46i1_6383,
     author = {Piotr Bajger and Mariusz Bodzioch},
     title = {Mathematical model of endothelial cell proliferation and maturation},
     journal = {Mathematica Applicanda},
     pages = { 3--12},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2018},
     doi = {10.14708/ma.v46i1.6383},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6383/}
}
TY  - JOUR
AU  - Piotr Bajger
AU  - Mariusz Bodzioch
TI  - Mathematical model of endothelial cell proliferation and maturation
JO  - Mathematica Applicanda
PY  - 2018
SP  -  3
EP  - 12
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6383/
DO  - 10.14708/ma.v46i1.6383
LA  - pl
ID  - 10_14708_ma_v46i1_6383
ER  - 
%0 Journal Article
%A Piotr Bajger
%A Mariusz Bodzioch
%T Mathematical model of endothelial cell proliferation and maturation
%J Mathematica Applicanda
%D 2018
%P  3-12
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6383/
%R 10.14708/ma.v46i1.6383
%G pl
%F 10_14708_ma_v46i1_6383
Piotr Bajger; Mariusz Bodzioch. Mathematical model of endothelial cell proliferation and maturation. Mathematica Applicanda, Tome 46 (2018) no. 1, pp.  3-12. doi : 10.14708/ma.v46i1.6383. http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6383/

Cité par Sources :