The phylogenetic effective sample size and jumps
Mathematica Applicanda, Tome 46 (2018) no. 1, pp. 25-33.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The phylogenetic effective sample size is a parameter that has as its goal the quantification of the amount of independent signal in a phylogenetically correlatedsample. It was studied for Brownian motion and Ornstein-Uhlenbeck models of trait evolution. Here, we study this composite parameter when the trait is allowedto jump at speciation points of the phylogeny. Our numerical study indicates thatthere is a non-trivial limit as the effect of jumps grows. The limit depends on thevalue of the drift parameter of the Ornstein-Uhlenbeck process.
DOI : 10.14708/ma.v46i1.6368
Classification : 62B10, 62P10, 92–08, 92B10.
Mots-clés : effective sample size, Ornstein–Uhlenbeck with jumps process, phylogenetic comparative methods.
@article{10_14708_ma_v46i1_6368,
     author = {Krzysztof Bartoszek},
     title = {The phylogenetic effective sample size and jumps},
     journal = {Mathematica Applicanda},
     pages = { 25--33},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2018},
     doi = {10.14708/ma.v46i1.6368},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6368/}
}
TY  - JOUR
AU  - Krzysztof Bartoszek
TI  - The phylogenetic effective sample size and jumps
JO  - Mathematica Applicanda
PY  - 2018
SP  -  25
EP  - 33
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6368/
DO  - 10.14708/ma.v46i1.6368
LA  - pl
ID  - 10_14708_ma_v46i1_6368
ER  - 
%0 Journal Article
%A Krzysztof Bartoszek
%T The phylogenetic effective sample size and jumps
%J Mathematica Applicanda
%D 2018
%P  25-33
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6368/
%R 10.14708/ma.v46i1.6368
%G pl
%F 10_14708_ma_v46i1_6368
Krzysztof Bartoszek. The phylogenetic effective sample size and jumps. Mathematica Applicanda, Tome 46 (2018) no. 1, pp.  25-33. doi : 10.14708/ma.v46i1.6368. http://geodesic.mathdoc.fr/articles/10.14708/ma.v46i1.6368/

Cité par Sources :