Energy decay result for a nonlinear wave p-Laplace equation with a delay term
Mathematica Applicanda, Tome 45 (2017) no. 1, pp. 65-80.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We consider the nonlinear (in space and time) wave equation with delay term in the internal feedback. Under conditions on the delay term and the term without delay, we study the asymptotic behavior of solutions using the multiplier method and general weighted integral inequalities.
DOI : 10.14708/ma.v45i1.603
Classification : 35L70, 93D15.
Mots-clés : Nonlinear wave equation, Time varying delay term, Decay rate, Multiplier method, p-Laplacian.
@article{10_14708_ma_v45i1_603,
     author = {Lakhdar Kassah Laouar and Zennir Khaled},
     title = {Energy decay result for a nonlinear wave {p-Laplace} equation with a delay term},
     journal = {Mathematica Applicanda},
     pages = { 65--80},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2017},
     doi = {10.14708/ma.v45i1.603},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.603/}
}
TY  - JOUR
AU  - Lakhdar Kassah Laouar
AU  - Zennir Khaled
TI  - Energy decay result for a nonlinear wave p-Laplace equation with a delay term
JO  - Mathematica Applicanda
PY  - 2017
SP  -  65
EP  - 80
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.603/
DO  - 10.14708/ma.v45i1.603
LA  - pl
ID  - 10_14708_ma_v45i1_603
ER  - 
%0 Journal Article
%A Lakhdar Kassah Laouar
%A Zennir Khaled
%T Energy decay result for a nonlinear wave p-Laplace equation with a delay term
%J Mathematica Applicanda
%D 2017
%P  65-80
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.603/
%R 10.14708/ma.v45i1.603
%G pl
%F 10_14708_ma_v45i1_603
Lakhdar Kassah Laouar; Zennir Khaled. Energy decay result for a nonlinear wave p-Laplace equation with a delay term. Mathematica Applicanda, Tome 45 (2017) no. 1, pp.  65-80. doi : 10.14708/ma.v45i1.603. http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.603/

Cité par Sources :