On two-parameters generalization of Fibonacci numbers
Mathematica Applicanda, Tome 45 (2017) no. 1, pp. 81-92 Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series

Voir la notice de l'article

In this paper we introduce a new two-parameters generalization ofFibonacci numbers - distance s-Fibonacci numbers F_s(k,n). We generalize known distance Fibonacci numbers by adding an additional integer parameter s. We give combinatorial and graph interpretations of these numbers. Moreover, we present some properties of distance s-Fibonacci numbers, which generalize known properties of classical Fibonacci and Padovan numbers.
DOI : 10.14708/ma.v45i1.1110
Classification : 11B37, 11C20, 15B36, 05C69
Mots-clés : Fibonacci numbers, Padovan numbers, distance Fibonacci numbers, generalized Fibonacci numbers, generating function, matrix generator
@article{10_14708_ma_v45i1_1110,
     author = {Dorota Br\'od},
     title = {On two-parameters generalization of {Fibonacci} numbers},
     journal = {Mathematica Applicanda},
     pages = { 81--92},
     year = {2017},
     volume = {45},
     number = {1},
     doi = {10.14708/ma.v45i1.1110},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.1110/}
}
TY  - JOUR
AU  - Dorota Bród
TI  - On two-parameters generalization of Fibonacci numbers
JO  - Mathematica Applicanda
PY  - 2017
SP  -  81
EP  - 92
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.1110/
DO  - 10.14708/ma.v45i1.1110
LA  - pl
ID  - 10_14708_ma_v45i1_1110
ER  - 
%0 Journal Article
%A Dorota Bród
%T On two-parameters generalization of Fibonacci numbers
%J Mathematica Applicanda
%D 2017
%P  81-92
%V 45
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.1110/
%R 10.14708/ma.v45i1.1110
%G pl
%F 10_14708_ma_v45i1_1110
Dorota Bród. On two-parameters generalization of Fibonacci numbers. Mathematica Applicanda, Tome 45 (2017) no. 1, pp.  81-92. doi: 10.14708/ma.v45i1.1110

Cité par Sources :