On two-parameters generalization of Fibonacci numbers
Mathematica Applicanda, Tome 45 (2017) no. 1, pp. 81-92
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
In this paper we introduce a new two-parameters generalization ofFibonacci numbers - distance s-Fibonacci numbers F_s(k,n). We generalize known distance Fibonacci numbers by adding an additional integer parameter s. We give combinatorial and graph interpretations of these numbers. Moreover, we present some properties of distance s-Fibonacci numbers, which generalize known properties of classical Fibonacci and Padovan numbers.
Classification :
11B37, 11C20, 15B36, 05C69
Mots-clés : Fibonacci numbers, Padovan numbers, distance Fibonacci numbers, generalized Fibonacci numbers, generating function, matrix generator
Mots-clés : Fibonacci numbers, Padovan numbers, distance Fibonacci numbers, generalized Fibonacci numbers, generating function, matrix generator
@article{10_14708_ma_v45i1_1110,
author = {Dorota Br\'od},
title = {On two-parameters generalization of {Fibonacci} numbers},
journal = {Mathematica Applicanda},
pages = { 81--92},
year = {2017},
volume = {45},
number = {1},
doi = {10.14708/ma.v45i1.1110},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v45i1.1110/}
}
Dorota Bród. On two-parameters generalization of Fibonacci numbers. Mathematica Applicanda, Tome 45 (2017) no. 1, pp. 81-92. doi: 10.14708/ma.v45i1.1110
Cité par Sources :