Numerical detection of bifurcation point in the curve
Mathematica Applicanda, Tome 43 (2015) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We are presenting a numerical method which detects the presence and position of a bifurcation simplex, the regular $(k+1)$-dimensional simplex, which may be considered as "fat bifurcation point", in the curve of zeroes of the $C^1$ map $f:{\mathbb R}^{k+1}\to{\mathbb R}^k$. On the other hand the bifurcation simplex appears in the neighbourhood of the bifurcation point, meaning that we have the method to locate the bifurcation point as well. The method does not require any estimation of the derivative of the function $f$ and refers to the values of the map $f$ only in the vertices of certain triangulation. The bifurcation simplex is detected by change of the Brouwer degree value of the restriction of the map $f$ to the appropriate $k$-simplex.This publication is co-financed by the European Union as part of the European Social Fund within the project Center for Applications of Mathematics.
DOI : 10.14708/ma.v43i1.577
Classification : 65H10;65H20
Mots-clés : path following algorithm;bifurcation point;bifurcation simplex
@article{10_14708_ma_v43i1_577,
     author = {Jacek Gulgowski},
     title = {Numerical detection of bifurcation point in the curve},
     journal = {Mathematica Applicanda},
     pages = { 3--18},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2015},
     doi = {10.14708/ma.v43i1.577},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v43i1.577/}
}
TY  - JOUR
AU  - Jacek Gulgowski
TI  - Numerical detection of bifurcation point in the curve
JO  - Mathematica Applicanda
PY  - 2015
SP  -  3
EP  - 18
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v43i1.577/
DO  - 10.14708/ma.v43i1.577
LA  - pl
ID  - 10_14708_ma_v43i1_577
ER  - 
%0 Journal Article
%A Jacek Gulgowski
%T Numerical detection of bifurcation point in the curve
%J Mathematica Applicanda
%D 2015
%P  3-18
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v43i1.577/
%R 10.14708/ma.v43i1.577
%G pl
%F 10_14708_ma_v43i1_577
Jacek Gulgowski. Numerical detection of bifurcation point in the curve. Mathematica Applicanda, Tome 43 (2015) no. 1, pp.  3-18. doi : 10.14708/ma.v43i1.577. http://geodesic.mathdoc.fr/articles/10.14708/ma.v43i1.577/

Cité par Sources :