On continuous time version of two-phase cell cycle model of Tyrcha
Mathematica Applicanda, Tome 41 (2013) no. 1, pp. 13-31.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We consider a model of two-phase cell cycle in a maturity-structured cellular population, which consists of a system of first order linear partial differential equations (transport equations). The model is based on similar biological assumptions as models of Lasota-Mackey, Tyson-Hannsgen and Tyrcha. We examine behavior of the solutions of the system along characteristics, give conditions for existence of invariant density, and compare results with outcomes of generational model.
DOI : 10.14708/ma.v41i1.392
Classification : 35Q92, 47D07, 92D25
Mots-clés : cell cycle, transport equations, invariant density, Markov operators
@article{10_14708_ma_v41i1_392,
     author = {Pawe{\l} Zwole\'nski},
     title = {On continuous time version of two-phase cell cycle model of {Tyrcha}},
     journal = {Mathematica Applicanda},
     pages = { 13--31},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2013},
     doi = {10.14708/ma.v41i1.392},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v41i1.392/}
}
TY  - JOUR
AU  - Paweł Zwoleński
TI  - On continuous time version of two-phase cell cycle model of Tyrcha
JO  - Mathematica Applicanda
PY  - 2013
SP  -  13
EP  - 31
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v41i1.392/
DO  - 10.14708/ma.v41i1.392
LA  - pl
ID  - 10_14708_ma_v41i1_392
ER  - 
%0 Journal Article
%A Paweł Zwoleński
%T On continuous time version of two-phase cell cycle model of Tyrcha
%J Mathematica Applicanda
%D 2013
%P  13-31
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v41i1.392/
%R 10.14708/ma.v41i1.392
%G pl
%F 10_14708_ma_v41i1_392
Paweł Zwoleński. On continuous time version of two-phase cell cycle model of Tyrcha. Mathematica Applicanda, Tome 41 (2013) no. 1, pp.  13-31. doi : 10.14708/ma.v41i1.392. http://geodesic.mathdoc.fr/articles/10.14708/ma.v41i1.392/

Cité par Sources :