On spins and genes
Mathematica Applicanda, Tome 40 (2012) no. 1, pp. 15-25.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Many processes in natural and social sciences can be modeled by systems of interacting objects. It is usually very difficult to obtain analytic expressions describing time evolution and equilibrium behavior of such systems. Very often we rely only on computer simulations. Fortunately, in many cases one can construct useful approximation schemes and derive exact results which capture some specific features of a given process. A frequent approach is to replace interactions between objects by a mean interaction. Here we illustrate a self-consistent mean-field approximation in two examples: the Ising model of interacting spins and a simple model of a self-regulating gene.
DOI : 10.14708/ma.v40i1.284
Classification : 00A71, 65D17, 68U10.
Mots-clés : Ising model, self-regulating gene, mean-field approximation.
@article{10_14708_ma_v40i1_284,
     author = {Jacek Mi\k{e}kisz and Paulina Szyma\'nska},
     title = {On spins and genes},
     journal = {Mathematica Applicanda},
     pages = { 15--25},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2012},
     doi = {10.14708/ma.v40i1.284},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v40i1.284/}
}
TY  - JOUR
AU  - Jacek Miękisz
AU  - Paulina Szymańska
TI  - On spins and genes
JO  - Mathematica Applicanda
PY  - 2012
SP  -  15
EP  - 25
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v40i1.284/
DO  - 10.14708/ma.v40i1.284
LA  - pl
ID  - 10_14708_ma_v40i1_284
ER  - 
%0 Journal Article
%A Jacek Miękisz
%A Paulina Szymańska
%T On spins and genes
%J Mathematica Applicanda
%D 2012
%P  15-25
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v40i1.284/
%R 10.14708/ma.v40i1.284
%G pl
%F 10_14708_ma_v40i1_284
Jacek Miękisz; Paulina Szymańska. On spins and genes. Mathematica Applicanda, Tome 40 (2012) no. 1, pp.  15-25. doi : 10.14708/ma.v40i1.284. http://geodesic.mathdoc.fr/articles/10.14708/ma.v40i1.284/

Cité par Sources :